Affiliation:
1. Department of Neurophysiology, Institute of Physiology, Humboldt University, D-10117 Berlin, Germany
Abstract
Microglia are immunocompetent cells in the brain that have many similarities with macrophages of peripheral tissues. In normal adult brain, microglial cells are in a resting state, but they become activated during inflammation of the central nervous system, after neuronal injury, and in several neurological diseases. Patch-clamp studies of microglial cells in cell culture and in tissue slices demonstrate that microglia express a wide variety of ion channels. Six different types of K+ channels have been identified in microglia, namely, inward rectifier, delayed rectifier, HERG-like, G protein-activated, as well as voltage-dependent and voltage-independent Ca2+-activated K+ channels. Moreover, microglia express H+ channels, Na+ channels, voltage-gated Ca2+ channels, Ca2+-release activated Ca2+ channels, and voltage-dependent and voltage-independent Cl− channels. With respect to their kinetic and pharmacological properties, most microglial ion channels closely resemble ion channels characterized in other macrophage preparations. Expression patterns of ion channels in microglia depend on the functional state of the cells. Microglial ion channels can be modulated by exposure to lipopolysaccharide or various cytokines, by activation of protein kinase C or G proteins, by factors released from astrocytes, by changes in the concentration of internal free Ca2+, and by variations of the internal or external pH. There is evidence suggesting that ion channels in microglia are involved in maintaining the membrane potential and are also involved in proliferation, ramification, and the respiratory burst. Further possible functional roles of microglial ion channels are discussed.
Publisher
American Physiological Society
Cited by
172 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献