Interaction of reactive oxygen species with ion transport mechanisms

Author:

Kourie Joseph I.1

Affiliation:

1. Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra, Australian Capital Territory 0200, Australia

Abstract

The use of electrophysiological and molecular biology techniques has shed light on reactive oxygen species (ROS)-induced impairment of surface and internal membranes that control cellular signaling. These deleterious effects of ROS are due to their interaction with various ion transport proteins underlying the transmembrane signal transduction, namely, 1) ion channels, such as Ca2+ channels (including voltage-sensitive L-type Ca2+currents, dihydropyridine receptor voltage sensors, ryanodine receptor Ca2+-release channels, andd- myo-inositol 1,4,5-trisphosphate receptor Ca2+-release channels), K+ channels (such as Ca2+-activated K+ channels, inward and outward K+ currents, and ATP-sensitive K+ channels), Na+ channels, and Cl channels; 2) ion pumps, such as sarcoplasmic reticulum and sarcolemmal Ca2+pumps, Na+-K+-ATPase (Na+ pump), and H+-ATPase (H+ pump); 3) ion exchangers such as the Na+/Ca2+exchanger and Na+/H+exchanger; and 4) ion cotransporters such as K+-Cl, Na+-K+-Cl, and Pi-Na+cotransporters. The mechanism of ROS-induced modifications in ion transport pathways involves 1) oxidation of sulfhydryl groups located on the ion transport proteins, 2) peroxidation of membrane phospholipids, and 3) inhibition of membrane-bound regulatory enzymes and modification of the oxidative phosphorylation and ATP levels. Alterations in the ion transport mechanisms lead to changes in a second messenger system, primarily Ca2+ homeostasis, which further augment the abnormal electrical activity and distortion of signal transduction, causing cell dysfunction, which underlies pathological conditions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3