Rab11a redistributes to apical secretory canaliculus during stimulation of gastric parietal cells

Author:

Calhoun Benjamin C.1,Lapierre Lynne A.1,Chew Catherine S.1,Goldenring James R.1

Affiliation:

1. Institute for Molecular Medicine and Genetics, Departments of Medicine, Surgery, and Cellular Biology and Anatomy, Medical College of Georgia, and Augusta Veterans Affairs Medical Center, Augusta, Georgia 30912

Abstract

Previous investigations in several systems have demonstrated that Rab3 family members redistribute to soluble fractions on fusion of secretory granules with target plasma membranes. Rab proteins are then recycled back onto mature secretory vesicles after reinternalization of the membrane. Although this cycle is well established for Rab3, far less is known about redistribution of other Rab proteins during vesicle fusion and recycling. In the gastric parietal cell, Rab11a is associated with H-K-ATPase-containing tubulovesicles, which fuse with the apical plasma membrane (secretory canaliculus) in response to agonists such as histamine. We have analyzed distribution of Rab11a and other tubulovesicle proteins in resting and histamine-stimulated rabbit parietal cells. Stimulation of isolated gastric glands in the presence of 100 μM histamine and 100 μM 3-isobutyl-1-methylxanthine did not cause a significant increase in soluble Rab11a. H-K-ATPase, Rab11a, Rab25, syntaxin 3, and SCAMPs increased immunoreactivity in stimulus-associated vesicles prepared from rabbits treated with histamine compared with those from ranitidine-treated animals. The large GTPase dynamin was found in both vesicle preparations, but there was no change in amount of immunoreactivity. Immunofluorescence staining of resting and histamine-stimulated primary cultures of parietal cells demonstrated redistribution of H-K-ATPase and Rab11a to F-actin-rich canalicular membranes. Dynamin was present on canalicular membranes in resting and stimulated cells. These results indicate that Rab11a does not cycle off the membrane during the process of tubulovesicle fusion with the secretory canaliculus. Thus Rab11a may remain associated with recycling apical membrane vesicle populations.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3