Affiliation:
1. Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, Vermont 05405; and Molecular Cardiology Laboratory, Cardiovascular Research Center, University of Cincinnati, Cincinnati, Ohio 45267
Abstract
Smooth muscle myosin heavy chains (MHCs), the motor proteins that power smooth muscle contraction, are produced by alternative splicing from a single gene. The smooth muscle MHC gene is capable of producing four isoforms by utilizing alternative splice sites located at the regions encoding the carboxy terminus and the junction of the 25- and 50-kDa tryptic peptides. These four isoforms, SM1A, SM1B, SM2A, and SM2B, are a combination of one of two heavy chains containing different carboxy-terminal tails (1 or 2) without (A) or with (B) an additional motif in the myosin head. In the present study, using RNA analysis and isoform-specific antibodies, we demonstrate the expression patterns of MHC isoforms during development in rat smooth muscle tissues. RNase protection analysis indicates that the mRNAs for SMA and SMB isoforms, which differ by a 21-nucleotide insertion in the region encoding the S1 head region of the myosin molecule, are differentially expressed during development in a highly tissue-specific manner. Smooth muscle MHC transcripts are first detectable in developing rat smooth muscle tissues at 17 days of fetal development. The SMB mRNA is shown to be expressed in smooth muscle from fetal bladder, intestine, and stomach and from neonatal aorta; however, it is not expressed in cultured smooth muscle cells from rat aorta. The SMA mRNA is also present at all stages of development in the smooth muscles examined; however, it is much less abundant than SMB mRNA in most fetal smooth muscles. We show here that the SMB isoform, which contains a unique seven-amino acid insertion at the junction of the 25- and 50-kDa tryptic peptides, is present in conjunction with SM1 and SM2 tails on immunoblots of smooth muscle from stomach, intestine, bladder, and uterus and is expressed during development in a pattern distinct from that of the SM1 and SM2 tail isoforms.
Publisher
American Physiological Society
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献