Affiliation:
1. Departments of Reproductive Biology and of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
Abstract
Estrogens increase secretion of cervical mucus in females. The objective of this research was to study the mechanisms of estrogen action. The experimental models were human CaSki (endocervical) and hECE (ectocervical) epithelial cells cultured on filters. Incubation in steroid-free medium increased transepithelial electrical resistance ( RTE) and decreased epithelial permeability to the cell-impermeant acid pyranine. Estrogen treatment reversed the effects, indicating estrogen decreases epithelial paracellular resistance. The estrogen effect was time and dose related (EC50∼1 nM) and specific (estradiol = diethylstilbestrol > estrone, estriol; no effect by progesterone, testosterone, or cortisol) and was blocked by progesterone, tamoxifen, and ICI-182780 (an estrogen receptor antagonist). Estrogen treatment did not modulate dilution potential or changes in RTEin response to diC8 or to low extracellular Ca2+(modulators of tight junctional resistance). In contrast, estrogen augmented decreases in RTEin response to hydrostatic and hypertonic gradients [modulators of resistance of lateral intercellular space ( RLIS)], suggesting estrogen decreases RLIS. Estrogen decreased cervical cell size, shortened response time relative to changes in cell size after hypertonic challenge, and augmented the decrease in cell size in response to hypertonic and hydrostatic gradients. Lowering luminal NaCl had no significant effect on RTE, and the Cl−channel blocker diphenylamine-2-carboxylate attenuated the hypertonicity-induced decrease in cell size to the same degree in control and estrogen-treated cells, suggesting estrogen effects on permeability and cell size are not mediated by modulating Na+or Cl−transport. In contrast, estrogen increased cellular G-actin levels, suggesting estrogens shift actin steady-state toward G-actin and the cervical cell cytoskeleton toward a more flexible structure. We suggest that the mechanism by which estrogens decrease RLISand increase permeability is by fragmenting the cytoskeleton and facilitating deformability and decreases in cervical cell size.
Publisher
American Physiological Society
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献