Rapid stimulation of glucose transport by mitochondrial uncoupling depends in part on cytosolic Ca2+ and cPKC

Author:

Khayat Zayna A.12,Tsakiridis Theodoros1,Ueyama Atsunori1,Somwar Romel12,Ebina Yousuke3,Klip Amira12

Affiliation:

1. Programme in Cell Biology, Hospital for Sick Children, Toronto M5G 1X8;

2. Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8; and

3. Division of Molecular Genetics, Institute for Enzyme Research, University of Tokushima, Tokushima 770-8503, Japan

Abstract

2,4-Dinitrophenol (DNP) uncouples the mitochondrial oxidative chain from ATP production, preventing oxidative metabolism. The consequent increase in energy demand is, however, contested by cells increasing glucose uptake to produce ATP via glycolysis. In L6 skeletal muscle cells, DNP rapidly doubles glucose transport, reminiscent of the effect of insulin. However, glucose transport stimulation by DNP does not require insulin receptor substrate-1 phosphorylation and is wortmannin insensitive. We report here that, unlike insulin, DNP does not activate phosphatidylinositol 3-kinase, protein kinase B/Akt, or p70 S6 kinase. However, chelation of intra- and extracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-AM in conjunction with EGTA inhibited DNP-stimulated glucose uptake by 78.9 ± 3.5%. Because Ca2+-sensitive, conventional protein kinase C (cPKC) can activate glucose transport in L6 muscle cells, we examined whether cPKC may be translocated and activated in response to DNP in L6 myotubes. Acute DNP treatment led to translocation of cPKCs to plasma membrane. cPKC immunoprecipitated from plasma membranes exhibited a twofold increase in kinase activity in response to DNP. Overnight treatment with 4-phorbol 12-myristate 13-acetate downregulated cPKC isoforms α, β, and γ and partially inhibited (45.0 ± 3.6%) DNP- but not insulin-stimulated glucose uptake. Consistent with this, the PKC inhibitor bisindolylmaleimide I blocked PKC enzyme activity at the plasma membrane (100%) and inhibited DNP-stimulated 2-[3H]deoxyglucose uptake (61.2 ± 2.4%) with no effect on the stimulation of glucose transport by insulin. Finally, the selective PKC-β inhibitor LY-379196 partially inhibited DNP effects on glucose uptake (66.7 ± 1.6%). The results suggest interfering with mitochondrial ATP production acts on a signal transduction pathway independent from that of insulin and partly mediated by Ca2+ and cPKCs, of which PKC-β likely plays a significant role.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3