Eosinophil major basic protein increases membrane permeability in mammalian urinary bladder epithelium

Author:

Kleine Teri J.1,Gleich Gerald J.2,Lewis Simon A.1

Affiliation:

1. Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555; and

2. Department of Immunology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905

Abstract

The eosinophil granule protein major basic protein (MBP) is toxic to a wide variety of cell types, by a poorly understood mechanism. To determine whether the action of MBP involves an alteration in membrane permeability, we tested purified MBP on rabbit urinary bladder epithelium using transepithelial voltage-clamp techniques. Addition of nanomolar concentrations of MBP to the mucosal solution caused an increase in apical membrane conductance only when the voltage across the apical membrane was cell interior negative. The magnitude of the MBP-induced conductance was a function of MBP concentration, and the rate of the initial increase in conductance was a function of the transepithelial voltage. The MBP-induced conductance was nonselective for K+ and Cl. Mucosal Ca2+ reversed the induced conductance, whereas mucosal Mg2+partially blocked the induced conductance and slowed the rate of the increase in conductance. The induced conductance was partially reversed by changing the voltage gradient across the apical membrane to cell interior positive. Prolonged exposure resulted in an irreversible loss of the barrier function of the urinary bladder epithelium. These results suggest that an increase in cell membrane ion permeability is an initial step in MBP-induced loss of barrier function.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3