Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells

Author:

Zhang Yan-Liang,Frangos John A.,Chachisvilis Mirianas

Abstract

The molecular mechanisms by which bone cells transduce mechanical stimuli into intracellular biochemical responses have yet to be established. There is evidence that mechanical stimulation acts synergistically with parathyroid hormone PTH(1-34) in mediating bone growth. Using picosecond time-resolved fluorescence microscopy and G protein-coupled receptor conformation-sensitive fluorescence resonance energy transfer (FRET), we investigated conformational transitions in parathyroid hormone type 1 receptor (PTH1R). 1) A genetically engineered PTH1R sensor containing an intramolecular FRET pair was constructed that enabled detection of conformational activity of PTH1R in single cells. 2) The nature of ligand-dependent conformational change of PTH1R depends on the type of ligand: stimulation with the PTH(1-34) leads to conformational transitions characterized by decrease in FRET efficiency while NH2-terminal truncated ligand PTH(3-34) stimulates conformational transitions characterized by higher FRET efficiencies. 3) Stimulation of murine preosteoblastic cells (MC3T3-E1) with fluid shear stress (FSS) leads to significant changes in conformational equilibrium of the PTH1R in MC3T3-E1 cells, suggesting that mechanical perturbation of the plasma membrane leads to ligand-independent response of the PTH1R. Conformational transitions induced by mechanical stress were characterized by an increase in FRET efficiency, similar to those induced by the NH2-terminal truncated ligand PTH(3-34). The response to the FSS stimulation was inhibited in the presence of PTH(1-34) in the flow medium. These results indicate that the FSS can modulate the action of the PTH(1-34) ligand. 4) Plasma membrane fluidization using benzyl alcohol or cholesterol extraction also leads to conformational transitions characterized by increased FRET levels. We therefore suggest that PTH1R is involved in mediating primary mechanochemical signal transduction in MC3T3-E1 cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3