Three-dimensional mitochondrial arrangement in ventricular myocytes: from chaos to order

Author:

Birkedal Rikke,Shiels Holly A.,Vendelin Marko

Abstract

We have developed a novel method to quantitatively analyze mitochondrial positioning in three dimensions. Using this method, we compared the relative positioning of mitochondria in adult rat and rainbow trout ( Oncorhynchus mykiss) ventricular myocytes. Energetic data suggest that trout, in contrast to the rat, have two subpopulations of mitochondria in their cardiomyocytes. Therefore, we speculated whether trout cardiomyocytes exhibit two types of mitochondrial patterns. Stacks of confocal images of mitochondria were acquired in live cardiomyocytes. The images were processed and mitochondrial centers were detected automatically. The mitochondrial arrangement was analyzed by calculating the three-dimensional probability density and distribution functions describing the distances between neighboring mitochondrial centers. In the rat (8 cells with a total of 7,546 mitochondrial centers), intermyofibrillar mitochondria are highly ordered and arranged in parallel strands. These strands are separated by ∼1.8 μm and can be found in any transversal direction relative to each other. Neighboring strands exhibit the same mitochondrial periodicity. In contrast to the rat, trout ventricular myocytes (22 cells; 5,528 mitochondrial centers) exhibit a relatively chaotic mitochondrial pattern. Neighboring mitochondria can be found in any direction relative to each other. Thus, two potential subpopulations of mitochondria in trout are not distinguishable by their pattern. The developed method required minor interaction in the filtering of the mitochondrial centers. It is therefore a practical approach to describe intracellular organization and may also be used for analysis of time-dependent organizational changes. The obtained quantitative description of mitochondrial organization is a requisite for accurate mathematical analysis of mitochondrial systems biology.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3