Affiliation:
1. Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
2. Ludwig Boltzmann Institute for Traumatology, Vienna, Austria
Abstract
Formyl peptide receptor-induced chemotaxis of neutrophils depends on the release of ATP and autocrine feedback through purinergic receptors. Here, we show that adrenergic receptor signaling requires similar purinergic feedback mechanisms. Real-time RT-PCR analysis revealed that human embryonic kidney (HEK)-293 cells express several subtypes of adrenergic (α1-, α2-, and β-receptors), adenosine (P1), and nucleotide receptors (P2). Stimulation of Gq-coupled α1-receptors caused release of cellular ATP and MAPK activation, which was blocked by inhibiting P2 receptors with suramin. Stimulation of Gi-coupled α2-receptors induced weak ATP release, while Gs-coupled β-receptors caused accumulation of extracellular ADP and adenosine. β-Receptors triggered intracellular cAMP signaling, which was blocked by scavenging extracellular adenosine with adenosine deaminase or by inhibiting A2a adenosine receptors with SCH58261. These findings suggest that adrenergic receptors require purinergic receptors to elicit downstream signaling responses in HEK-293 cells. We evaluated the physiological relevance of these findings using mouse aorta tissue rings. Stimulation of α1-receptors induced ATP release and tissue contraction, which was reduced by removing extracellular ATP with apyrase or in the absence of P2Y2receptors in aorta rings from P2Y2receptor knockout mice. We conclude that, like formyl peptide receptors, adrenergic receptors require purinergic feedback mechanisms to control complex physiological processes such as smooth muscle contraction and regulation of vascular tone.
Publisher
American Physiological Society
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献