siRNA knock down of casein kinase 2 increases force and cross-bridge cycling rates in vascular smooth muscle

Author:

Smolock Elaine M.,Wang Tanchun,Nolt Jocelyn K.,Moreland Robert S.

Abstract

Contraction of smooth muscle involves myosin light chain (MLC) kinase catalyzed phosphorylation of the regulatory MLC, activation of myosin, and the development of force. However, this cannot account for all aspects of a smooth muscle contraction, suggesting that other regulatory mechanisms exist. One potentially important technique to study alternative sites of contractile regulation is the use of small interfering RNA (siRNA). The goal of this study was to determine whether siRNA technology can decrease the levels of a specific protein and allow for the determination of how that protein affects contractile regulation. To achieve this goal, we tested the hypothesis that casein kinase 2 (CK2) is part of the complex regulatory scheme present in vascular smooth muscle. Using intact strips of swine carotid artery, we determined that siRNA against CK2 produced a tissue that resulted in a ∼60% knockdown after 4 days in organ culture. Intact strips of vascular tissue depleted of CK2 produced greater levels of force and exhibited an increased sensitivity to all stimuli tested. This was accompanied by an increase in cross-bridge cycling rates but not by a change in MLC phosphorylation levels. α-Toxin-permeabilized vascular tissue depleted of CK2 also showed an increased sensitivity to calcium compared with control tissues. Our results demonstrate that siRNA is a viable technique with which to study regulatory pathways in intact smooth muscle tissue. Our results also demonstrate that CK2 plays an important role in the mechanism(s) responsible for the development of force and cross-bridge cycling by a MLC phosphorylation-independent pathway.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3