Direct measurement of extracellular proton flux from isolated gastric glands

Author:

Thibodeau A.1,Kuo R. C.1,Crothers J. M.1,Yao X.1,Owicki J. C.1,Forte J. G.1

Affiliation:

1. Department of Molecular and Cell Biology, University of California,Berkeley 94720.

Abstract

We used the microphysiometer, a sensitive extracellular pH sensor, to resolve luminal (or apical) H+ secretion and basolateral release of OH- as well as liberation of acidic metabolites in rabbit gastric glands. Stimulation of glands via the adenosine 3',5'-cyclic monophosphate pathway produced a biphasic change in the extracellular acidification rate (EAR): after an initial transient decrease below the unstimulated baseline (-40.9 +/- 3.4%), the EAR increased to a steady-state maximal plateau (+98.1 +/- 5.3%) within 30 min (n = 37). We interpret the biphasic EAR profile as an initial excess of basolaterally released OH- followed by delayed luminal efflux of simultaneously produced H+. The elevated EAR at steady state reflected liberation of metabolic acid attributed to H(+)-K(+)-ATPase enzymatic activity. The presence of H2-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid prevented OH- release and reduced steady-state EAR. Basolateral OH- release and steady-state EAR were also inhibited by the H(+)-K(+)-ATPase inactivators omeprazole and SCH-28080. Inhibition of Na+/H+ exchange did not reduce steady-state EAR and did not affect apical H+ production, as judged by the accumulation of the weak base aminopyrine. Sodium thiocyanate (1 mM), which short circuits intraluminal H+ accumulation, blocked OH- release, demonstrating its dependence on H(+)-OH- separation at the apical membrane. A computerized model was developed to illustrate how the observed biphasic EAR profile would result from a delayed luminal efflux of H+ due to transitory intraluminal compartmentalization.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3