Effects of tetrodotoxin-induced neural inactivation on single muscle fiber metabolic enzymes

Author:

Michel R. N.1,Cowper G.1,Chi M. M.1,Manchester J. K.1,Falter H.1,Lowry O. H.1

Affiliation:

1. School of Human Movement, Laurentian University, Sudbury, Ontario, Canada.

Abstract

Selected enzymes were measured in mixed-fiber bundles and individual fibers from rat plantaris (PL) and soleus (Sol) muscles that had undergone either 2 wk of tetrodotoxin (TTX) inactivation of the sciatic nerve, a sham operation, or were contralateral to the TTX limb. TTX disuse caused severe wasting of PL (46%) and Sol (26%) muscles and of single fibers (50% and 40%, respectively). TTX PL and Sol also had reduced (50%) glycogen content. In TTX, PL, and Sol macro samples and single fibers, the activities (mol.h-1.kg dry wt-1) of hexokinase, glycogen phosphorylase, and lactate dehydrogenase were higher, lower, and unchanged, respectively, compared with controls. Single-fiber data showed that these changes occurred in all fibers. In TTX PL macro samples, activities of glycerol-3-phosphate dehydrogenase (GPDH), pyruvate kinase (PK), malate dehydrogenase (MDH), citrate synthase (CS), beta-hydroxyacyl-CoA dehydrogenase (BOAC), and thiolase were, or tended to be, lower. Single-fiber data showed a disappearance of high-oxidative moderate glycolytic fibers (i.e., usually fast-twitch oxidative in control) and the appearance of more fibers with a metabolic enzyme profile approaching that of control slow-oxidative fibers. In TTX Sol macro samples, GPDH and PK tended to be higher, and thiolase, BOAC, CS, and MDH lower. Single-fiber data corroborated these findings and suggested the appearance of fast fibers with downregulated oxidative enzyme profiles. Our results suggest that neuromuscular activity is a major, but not the sole, determinant of the size and metabolic heterogeneity that exists in muscle cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3