Ionic currents during action potentials in mammalian skeletal muscle fibers analyzed with loose patch clamp

Author:

Wolters H.1,Wallinga W.1,Ypey D. L.1,Boom H. B.1

Affiliation:

1. Department of Electrical Engineering, University of Twente, Enschede,The Netherlands.

Abstract

The loose patch-clamp technique was applied to analyze transmembrane currents during propagating action potentials in superficial fibers of musculi extensor digitorum longus of the mouse in vitro. Experimentally three components were identified in the transmembrane current: 1) a capacitive, 2) an inward sodium, and 3) an outward potassium current. Other components were negligible. The capacitive current was similar in shape to the first derivative of the intracellularly measured action potential. Tetrodotoxin, tetraethylammonium, and 4-aminopyridine, applied in the pipette, were used to identify the contribution in the current by sodium and potassium ions. With extracellularly applied depolarization steps only a sodium current was observed, not a potassium current. Occasionally found outward currents were artifactual. The behaviour of delayed rectifier potassium channels in muscle fiber membranes is discussed in the light of these unexpected findings. We conclude that potassium channel activity contributing to and measured during action potential generation is in some way inaccessible to loose patch extracellular voltage-clamp stimulation and that loose patch action current recording is a useful noninvasive method to analyze membrane conductances involved in action potential generation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3