Affiliation:
1. Department of Electrical Engineering, University of Twente, Enschede,The Netherlands.
Abstract
The loose patch-clamp technique was applied to analyze transmembrane currents during propagating action potentials in superficial fibers of musculi extensor digitorum longus of the mouse in vitro. Experimentally three components were identified in the transmembrane current: 1) a capacitive, 2) an inward sodium, and 3) an outward potassium current. Other components were negligible. The capacitive current was similar in shape to the first derivative of the intracellularly measured action potential. Tetrodotoxin, tetraethylammonium, and 4-aminopyridine, applied in the pipette, were used to identify the contribution in the current by sodium and potassium ions. With extracellularly applied depolarization steps only a sodium current was observed, not a potassium current. Occasionally found outward currents were artifactual. The behaviour of delayed rectifier potassium channels in muscle fiber membranes is discussed in the light of these unexpected findings. We conclude that potassium channel activity contributing to and measured during action potential generation is in some way inaccessible to loose patch extracellular voltage-clamp stimulation and that loose patch action current recording is a useful noninvasive method to analyze membrane conductances involved in action potential generation.
Publisher
American Physiological Society
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献