Transport and interaction of nitrogen oxides and NO2 with CO2-HCO3- transporters in pancreatic acini

Author:

Zhao H.1,Xu X.1,Ujiie K.1,Star R. A.1,Muallem S.1

Affiliation:

1. Department of Physiology and Internal Medicine, University of TexasSouthwestern Medical Center, Dallas 75235.

Abstract

Recently, we showed that NO2- increases gap junction (GJ) permeability and synchronizes intracellular Ca2+ concentration oscillations in pancreatic acini (Loessburg et al., J. Biol. Chem. 268: 19769-19775, 1993). NO2- is also an end product of nitric oxide (NO) production and metabolism. Because of the effect of NO2- on GJ permeability and the possible importance of NO2- in NO metabolism and cytotoxicity, we used pancreatic acinar cells and intracellular pH (pHi) measurements to study the interaction of nitrogen oxides and NO2- with cellular proteins. Exposing cells to NO2- resulted in a concentration-dependent cytosolic acidification. The acidification did not require the transport of NO2- and was not mediated by diffusion of HNO2. Because the acidification was prevented by CO2-HCO3- and inhibition of carbonic anhydrase, it is possible that other nitrogen oxides present in a solution containing NO2- enter the cells by diffusion and interact with OH- or H2O to stably acidify the cytosol. NO2- itself is shown to be transported by the HCO3- transporters present in the plasma membrane. Thus manipulation of the cellular Cl- gradient and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) were used to show Cl-/NO2- exchange, whereas stimulation of external Na(+)-dependent amiloride-insensitive and DIDS-sensitive pHi increase in acidified cells was used to demonstrate a Na(+)-(NO2-)n cotransport. Hence NO2- can be a convenient substitute for HCO3- when studying HCO3- transport in an open system. The studies also show that cellular levels of nitrogen oxides and NO2- can be modulated by the cellular HCO3(-)-buffering system.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3