Affiliation:
1. Department of Medicine, Albert Einstein College of Medicine, Bronx,New York 10461.
Abstract
Many cells, both single and epithelial, are programmed for exocytosis. In most cases, the contents of cytoplasmic vesicles are delivered rapidly and directly to the extracellular fluid. The process has been intensively studied in the chromaffin cell and the nerve terminal, where, as in other cells, exocytosis is under a complex type of cytoskeletal control. An array of vesicle-associated proteins mediates attachment of the vesicles to the cytoskeleton, their release, and their fusion with the plasma membrane. Two functional pools of vesicles, the releasable and reserve pool, carry out immediate and long-term secretory activity. Some of the mediators of neurotransmitter vesicle fusion, originally thought to be restricted to neurosecretory cells, have now been found in nonneuronal cells. The mammalian collecting duct and the amphibian bladder are also engaged in exocytosis. In both epithelia, antidiuretic hormone (ADH) induces the transfer of water channels from cytoplasmic vesicles to the apical cell membrane. The process is slower than in the nerve terminal and ends with channel placement rather than the extrusion of vesicular contents. Nevertheless, there are several respects in which cytoskeletal control, vesicle positioning in the cell, docking, and fusion may prove to resemble the events in neurosecretion. This review begins with a survey of cytoskeletal structure and function in the erythrocyte, the chromaffin cell, and the nerve terminal and then presents current studies of ADH-induced exocytosis, emphasizing common themes in cytoskeletal control.
Publisher
American Physiological Society
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献