Affiliation:
1. Department of Medicine, University of Pennsylvania,Philadelphia.
Abstract
Amiloride and related compounds have found widespread use as cation transport inhibitors. We have previously raised a series of polyclonal anti-amiloride antibodies using different amiloride-protein conjugates as immunogens, where amiloride was coupled to protein either through its guanidino moiety or through its 5-aminopyrazinyl moiety. The anti-amiloride antibodies recognized distinct sites on amiloride, and the site of attachment of amiloride to carrier protein was a critical factor in determining which part of the amiloride molecule was recognized by the anti-amiloride antibody. The specificity of binding of amiloride analogues to these polyclonal anti-amiloride antibodies mimicked the specificity of binding of amiloride analogues to selected isoforms of the epithelial Na+ channel or the Na+/H+ exchanger, suggesting that antigen binding site of these antibodies might be similar in structure to amiloride binding sites on selected Na+ transport proteins. We previously generated monoclonal anti-idiotypic antibodies RA2.4 and RA6.3 by an auto-anti-idiotypic approach, using amiloride coupled to albumin through the guanidinium moiety (amiloride-A1). We have now raised a series of monoclonal anti-idiotypic antibodies, T6, T26, T40, and T181, using amiloride coupled to keyhole limpet hemocyanin through the 5-aminopyrazinyl moiety (amiloride-A5) as an immunogen with the same auto-anti-idiotypic approach. These monoclonal anti-idiotypic antibodies recognized both polyclonal anti-amiloride-A1 and anti-amiloride-A5 antibodies, suggesting that idiotype-anti-idiotype interaction was not epitope restricted.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献