Adenosine transport in cultured human umbilical vein endothelial cells is reduced in diabetes

Author:

Sobrevia L.1,Jarvis S. M.1,Yudilevich D. L.1

Affiliation:

1. Department of Physiology and Biophysics, University of Chile, Santiago.

Abstract

Adenosine transport in cultured human umbilical vein endothelial cells (HUVEC) was characterized and shown to be mediated by a single facilitated diffusion mechanism. Initial rates of adenosine influx at 22 degrees C were saturable [apparent Michaelis constant, 69 +/- 10 microM; maximum velocity (Vmax), 600 +/- 70 pmol.10(6) cells-1.s-1] and inhibited by nitrobenzylthioinosine (NBMPR). Formycin B had an unusually high affinity [inhibitory constant (Ki), 18 +/- 4.3 microM], whereas inosine had a low affinity (Ki, 440 +/- 68 microM) and nucleobases were without effect on adenosine influx. The number of transporters (1.2 x 10(6) sites/cell) was estimated by NBMPR equilibrium binding (apparent dissociation constant, 0.11 +/- 0.01 nM; maximum binding, 2.0 +/- 0.15 pmol/10(6) cells). In addition, we compared these endothelial cells with those obtained from cords from pregnancies complicated by diabetes (HUVEC-D), since embriopathy may occur in these conditions. HUVEC-D exhibited a 2.3-fold reduction in both the Vmax for adenosine influx and the maximum number of NBMPR binding sites (260 +/- 40 pmol.10(6) cells-1.s-1 and 0.86 +/- 0.08 pmol/10(6) cells, respectively). However, the turnover number for each nucleoside transporter in normal and diabetic HUVEC was similar (approximately 300 adenosine molecules/s). Adenosine metabolism at 10 microM in HUVEC-D was modified compared with normal cells. Intracellular phosphorylation (> 90%) was the predominant pathway in normal HUVEC, whereas in HUVEC-D, substantial levels of adenine and adenosine were detected. The present results demonstrate therefore the downregulation of the NBMPR-sensitive nucleoside transporter and changes in adenosine metabolism in HUVEC from diabetic pregnancies.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3