Na(+)-dependent and Na(+)-independent systems of choline transport by plasma membrane vesicles of A549 cell line

Author:

Kleinzeller A.1,Dodia C.1,Chander A.1,Fisher A. B.1

Affiliation:

1. Institute for Environmental Medicine, University of PennsylvaniaSchool of Medicine, Philadelphia 19104.

Abstract

Membrane vesicles of A549 lung cells accumulate choline by two pathways: the Na(+)-independent uphill uptake of choline [Michaelis-Menten constant (Km) approximately 44 microM; steady-state gradient approximately 45 at 5 microM external choline] is dependent on a transmembrane H+ gradient, is relatively insensitive to hemicholinium-3, is amiloride sensitive, and is abolished by valinomycin plus carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The Na(+)-dependent active choline uptake (Km approximately 4 microM, inhibitor constant for hemicholinium-3 approximately 0.1 microM), is specific for Na+, is amiloride and FCCP sensitive, and is electrogenic: the overshoot using K(+)-loaded vesicles and NaCl gradient was increased by valinomycin. The time of the overshoot peak, T was approximately 90 s in a NaSCN medium (or in presence of other lipid-soluble anions), a value close to that for alpha-aminoisobutyrate as substrate (T = approximately 1.5 min). T was lengthened in NaCl medium to approximately 10 min, and the overshoot was abolished by impermeant anions. External Cl- is not required for the choline uptake: valinomycin produced an overshoot in the presence of only impermeant anions, with T approximately 90 s. Most of the above properties are shared by the high-affinity Na(+)-dependent choline transport in synaptosomes. The characteristics of the Na(+)-dependent choline uptake by membrane vesicles of A549 cells are consistent with an electrogenic choline(+)-Na+ cotransport, with the rate-limiting anion (e.g., Cl-) influx balancing the positive charges transferred into the vesicles. The data are also consistent with an involvement of an amiloride-sensitive choline+/H+ antiport (or choline(+)-OH- symport) in the low- and high-affinity choline uptake pathways.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3