The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding

Author:

Jackson P. S.1,Morrison R.1,Strange K.1

Affiliation:

1. Department of Medicine, Children's Hospital, Harvard Medical School,Boston, Massachusetts 02115.

Abstract

Efflux of intracellular organic osmolytes to the external medium is a ubiquitous response to cell swelling. Accumulating evidence indicates that volume regulatory loss of structurally unrelated organic osmolytes from cells is mediated by a relatively nonselective volume-sensitive anion channel. In C6 cells, we have termed this channel VSOAC for volume-sensitive organic osmolyte-anion channel. Swelling-induced activation of VSOAC required the presence of ATP or nonhydrolyzable ATP analogues [adenosine 5'-O-(3-thiotriphosphate), adenylylmethyl-enediphosphonate (AMP-PCP), or 5'-adenylylimidodiphosphate] in the patch pipette. Sustained activation of VSOAC also required ATP. Channel rundown was observed when cellular ATP levels were lowered by intracellular dialysis with the patch pipette solution. Rundown was prevented by the ATP analogue AMP-PCP. Passive swelling-induced myo-[3H]inositol and [3H]taurine efflux was blocked by metabolic inhibitors that decreased cellular ATP levels. Titration of cellular ATP levels with azide demonstrated that the apparent dissociation constant (Kd) for ATP of both myo-inositol and taurine efflux was approximately 1.7 mM. The high Kd for ATP indicates that cellular metabolic state plays an important role in modulating organic osmolyte loss. Regulation of VSOAC activity by ATP prevents depletion of metabolically expensive organic osmolytes when cellular energy production is reduced. In addition, ATP-dependent regulation provides essential feedback to minimize the loss of energy-producing carbon sources such as pyruvate, short-chain fatty acids, ketone bodies, and amino acids, which readily permeate this channel.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3