Hepatocyte inducible nitric oxide synthesis is influenced in vitro by cell density

Author:

Nussler A. K.1,Liu Z. Z.1,Di Silvio M.1,Sweetland M. A.1,Geller D. A.1,Lancaster J. R.1,Billiar T. R.1,Freeswick P. D.1,Lowenstein C. L.1,Simmons R. L.1

Affiliation:

1. Department of Surgery and Anesthesiology and Critical Care Medicine,University of Pittsburgh, Pennsylvania 15261.

Abstract

Hepatocyte plating density is known to affect cell function. Human and rat hepatocytes have been shown to express the inducible nitric oxide synthase (INOS) in response to cytokines plus lipopolysaccharide (LPS). The following studies were performed to determine the effects of hepatocyte plating density on the regulation of INOS. Rat hepatocytes were plated at densities from 10(4) to 20 x 10(4) hepatocytes/cm2 and stimulated with a combination of LPS, interferon-gamma, interleukin-1, and tumor necrosis factor. We found that NO2- plus NO3- released from stimulated hepatocytes declines with increasing hepatocyte density. Similar effects were seen for 3',5'-cyclic monophosphate release into supernatants and in the amount of nonheme iron-nitrosyl signals measured by electron paramagnetic resonance spectroscopy. Limitations of substrate (L-arginine) and 5,6,7,8-tetrahydrobiopterin were excluded as cause of the reduced nitric oxide generation at higher densities. Although mRNA levels for INOS were not influenced when measured at 24 h, there was a marked reduction in INOS enzyme activity and INOS protein detectable by Western blotting at higher cell density. Total protein synthesis decreased as hepatocyte density increased in both nonstimulated and stimulated hepatocytes at higher cell densities. These data suggest that reduced INOS translation may account for the density-dependent reduction in INOS activity in cultured hepatocytes. The importance of this phenomenon remains to be determined in vivo but has important implications for the in vitro study of INOS expression.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3