Skeletal muscle junctional membrane protein content in pigs with different ryanodine receptor genotypes

Author:

Mickelson J. R.1,Ervasti J. M.1,Litterer L. A.1,Campbell K. P.1,Louis C. F.1

Affiliation:

1. Department of Veterinary PathoBiology, University of Minnesota, St. Paul 55108.

Abstract

The content of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, transverse tubule dihydropyridine receptor (DHPR), and SR ryanodine receptor (RyR) was determined in muscle of pigs homozygous for the normal RyR allele and homozygous or heterozygous for the malignant hyperthermia-susceptible (MHS) RyR allele. Total muscle membranes isolated from 1-day-old pigs of the three different genotypes did not differ in the content of any of these proteins. However, at 28 days of age, crude membranes and total muscle homogenates from homozygous MHS pigs exhibited only 61-81% of the [3H]PN 200-110 or [3H]ryanodine binding of identical preparations isolated from normal pigs; these MHS membranes also contained only 50% of the normal content of each of the DHPR subunits. The crude membranes and muscle homogenates from heterozygous pigs were intermediate to both types of homozygotes in terms of [3H]PN 200-110 binding, [3H]ryanodine binding, and the content of the DHPR subunits. However, membrane preparations enriched in triadic junctional proteins isolated from 3- to 4-mo-old pigs of the three different genotypes did not differ in their [3H]PN 200-110 binding, [3H]ryanodine binding, or Ca(2+)-ATPase activities. We conclude that, although the stoichiometry of the RyR to DHPR is not altered, the presence of the MHS RyR allele during muscle development results in a decreased relative content of these two proteins. This is probably due to a lower junctional membrane content and may be an important ultrastructural consequence of the altered sarcoplasmic Ca2+ regulation in MHS muscle.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3