Abstract
The relative Cl- and K+ sensitivity of the basolateral membrane potential of the in vitro Necturus gallbladder epithelium was determined. Tissues were punctured with two conventional glass microelectrodes to simultaneously measure the intracellular voltage (Vcs) and the voltage across the subepithelial connective tissue (Vse). Increasing the serosal K+ concentration from 2.5 to 25 mM caused a rapid monotonic depolarization of Vcs without changes of Vse. Reduction of serosal Cl- concentration (98 to 8 mM) caused a transient change of Vse. Thus the difference between Vcs and Vse more accurately reflected the basolateral membrane voltage (Vc) after Cl- concentration changes. The changes of Vc were small and biphasic in response to the decrease of serosal Cl- concentration. Perfusion of a low-ionic-strength solution in the mucosal chamber decreased the current that normally passes through the epithelium. Consistent with the notion that the basolateral voltage changes are attenuated by parallel pathways, the K+-induced depolarization increased by 80% under these conditions. The changes of Vc in response to Cl- substitutions were not different from those of tissue bathed in control solution. Thus the basolateral membrane voltage is relatively insensitive to changes of serosal Cl- concentration. I conclude that Cl- movement across the basolateral membrane is not attributable to simple electrodiffusion, and Cl- exit from these cells at this membrane must be electroneutral.
Publisher
American Physiological Society
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献