Mammalian skeletal muscle does not express functional voltage-gated H+ channels

Author:

Fuster Clarisse1,Idoux Romane1,Berthier Christine1,Jacquemond Vincent1,Allard Bruno1

Affiliation:

1. Institut NeuroMyoGene, Université Lyon 1, Université de Lyon, UMR CNRS 5310, Inserm U1217, Lyon, France

Abstract

High metabolic activity and existence of a large transmembrane inward electrochemical gradient for H+ at rest promote intracellular acidification of skeletal muscle. Exchangers and cotransports efficiently contend against accumulation of intracellular H+ and associated deleterious effects on muscle functions. Voltage-gated H+ channels have also been found to represent another H+ extrusion pathway in cultured muscle cells. Up to now, the skeletal muscle cell was therefore the unique vertebrate excitable cell in which voltage-gated H+ currents have been described. In this study, we show that, unlike cultured cells, single mouse muscle fibers do not generate H+ currents in response to depolarization. In contrast, expression of human voltage-gated H+ channels in mouse muscle gives rise to robust outward voltage-gated H+ currents. This result excludes that inappropriate experimental conditions may have failed to reveal voltage-gated H+ currents in control muscle. This work therefore demonstrates that fully differentiated mammalian muscle fibers do not express functional voltage-gated H+ channels and consequently can no longer be considered as the only vertebrate excitable cells exhibiting voltage-gated H+ currents.

Funder

University Claude Bernard Lyon 1

Centre National de la Recherche Scientifique (National Center for Scientific Research)

Institut national de la santé et de la recherche médicale (National Institute of Health and Medical Research)

Association Francaise contre les Myopathies (Association Française contre les Myopathies)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3