Internalization and catabolism of insulin by an established renal cell line

Author:

Yagil C.1,Frank B. H.1,Rabkin R.1

Affiliation:

1. Department of Medicine, Stanford University, California 94305.

Abstract

Proximal renal tubules are a key site of insulin metabolism. To explore the kinetics and metabolic requirements of insulin internalization and catabolism, we used the opossum kidney cell line, which has proximal tubular-like features and possesses insulin-specific receptors. Internalization was determined by separating membrane-bound insulin from intracellular insulin by exposure to an acidified medium. Internalization of membrane-bound insulin was rapid, and half-maximal internalization occurred within 2.5 min. Degradation products did not accumulate in the cell but appeared in the medium after a delay of 5 min from the onset of internalization. In other experiments, addition of KCN (2 mM) or omission of glucose did not alter degradation, but KCN, combined with the omission of glucose, inhibited degradation by 64%. This was associated with a 240% increase in membrane-bound insulin and an 81% decrease in intracellular insulin. Accordingly, it appears that under these circumstances impaired degradation was a consequence of impaired internalization. In contrast, although 0.1 mM chloroquine, an endosomal-lysosomal inhibitor, also depressed degradation (by 57%), intracellular insulin increased fourfold, indicating failure of intracellular processing. We conclude that these cultured kidney cells rapidly internalize and degrade insulin and that internalization, a prerequisite for degradation, is dependent on energy that can be derived from anaerobic glycolysis or oxidative metabolism. Furthermore, the intracellular degradative processing of insulin by these cells involves a chloroquine-sensitive pathway.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3