Protein kinase activator 1-oleoyl-2-acetyl-sn-glycerol inhibits two types of calcium currents in GH3 cells

Author:

Marchetti C.1,Brown A. M.1

Affiliation:

1. Department of Physiology and Molecular Biophysics, Baylor College ofMedicine, Houston, Texas 77030.

Abstract

Two types of Ca2+ currents, high-threshold, long-lasting, or L currents and low-threshold, transient, or T currents, are present in many excitable cells. L-type Ca2+ current is modulated by, among others, beta- and alpha-adrenoreceptors and intracellular Ca2+, but modulation of T-type Ca2+ current is less well established. 1-Oleoyl-2-acetyl-sn-glycerol (OAG), a synthetic activator of protein kinase C (PKC), modulates whole cell Ca2+ currents in a variety of excitable cells. Whether activators of PKC affect preferentially L and T types of Ca2+ currents is unknown. We tested OAGs effects on whole cell Ca2+ currents in the clonal GH3 line of anterior pituitary cells. The currents were measured using the whole cell patch-clamp method. Four to 60 microM OAG reversibly reduced Ca2+ currents produced by test potentials to 10 mV, and the inhibition was half maximal at approximately 25 microM. Such concentrations depress Ca2+ currents in chick embryo dorsal root ganglion (DRG) cells and clonal AtT-20 pituitary cells. To test whether OAG acted preferentially on L or T current, we separated the two using depolarizing prepulses to inactivate T current. OAG (40 microM) attenuated T currents by 60% and L currents by 50%. The current waveforms were not changed and were simply scaled, and the effects on both occurred approximately 15 s after OAG was applied. In chick embryo DRGs OAG inhibited the T current by 30% and the L current by 50%. We conclude that PKC modulates Ca2+ currents by acting on both L and T Ca2+ channels.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3