Affiliation:
1. Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas 75235.
Abstract
We have previously characterized two saturable, ligand-dependent processes for 67Cu uptake by hypothalamic slices: a high- and low-affinity process (22). In this study, we wished to ascertain if veratridine, a secretagogue that mimics a physiological release process, stimulates the release of newly taken up 67Cu and whether uptake of 67Cu into the releasable pool of copper is dependent on the process of 67Cu uptake. Hypothalamic or caudate slices from male rats were loaded for 30 min with 67Cu complexed to histidine (His) under conditions favoring high- or low-affinity uptake. First, we assessed the stability of the newly taken up 67Cu and found that, regardless of the mode of 67Cu entry into the tissue, greater than or equal to 85% of the 67Cu is retained in tissues incubated for 3 h in 67Cu-free buffer. Moreover, the 67Cu taken up by the high-affinity process was not displaced by 15-fold molar excess of nonradiolabeled Cu2+, histidine, albumin, or Zn2+, and only 20-30% of the 67Cu taken up by the low-affinity process was displaced by 10-fold excess Cu2+ or albumin. Next, we assessed veratridine stimulation of 67Cu release and found that 67Cu release occurred only from tissues loaded with the high- but not with the low-affinity process. This effect of veratridine was calcium dependent and was blocked by Tetrodotoxin, a specific blocker of the voltage-sensitive Na+ channel. In addition, we confirmed our earlier observation that a depolarizing concentration of K+ stimulates 67Cu release.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献