Convergence of cAMP and phosphoinositide pathways during rat parotid secretion

Author:

McKinney J. S.1,Desole M. S.1,Rubin R. P.1

Affiliation:

1. Department of Pharmacology, Medical College of Virginia, Richmond23298.

Abstract

Rat parotid acinar cells were employed to investigate the mechanism by which receptor agonists that activate the phosphoinositide pathway enhance the stimulatory effects of adenosine 3',5'-cyclic monophosphate (cAMP) on amylase secretion. Norepinephrine (NE), which activates both alpha- and beta-adrenoceptors, evoked a secretory response that was greater than the sum of the responses obtained when NE was employed as a beta-agonist (in the presence of prazosin) and as an alpha-agonist (in the presence of propranolol). The enhancement of amylase secretion induced by NE was accompanied by an augmented rise in Ca2+ influx, as determined by fura-2 analysis. NE-induced cAMP production was comparable to that evoked by NE as a beta-agonist, and the accumulation of [3H]inositol 1,4,5-trisphosphate (IP3) evoked by NE was comparable to that elicited by NE as an alpha-agonist. The beta-adrenoceptor agonist isoproterenol potentiated the rise in cytosolic Ca2+ elicited by the muscarinic agonist carbachol, while possessing no stimulatory effect of its own. Isoproterenol had no effect on carbachol-induced stimulation of [3H]IP3 or 1,3,4,5-[3H]inositol tetrakisphosphate accumulation. Ionomycin and dibutyryl cAMP in combination produced a similar enhancing effect on the Ca2+ signal and amylase release as adrenergic and muscarinic receptor agonists. These results suggest that the synergism between the phosphoinositide and cAMP-signaling systems in parotid cells resides in enhanced Ca2+ availability.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3