Localization of spermidine uptake in rabbit lung slices

Author:

Saunders N. A.1,McGeachie J. K.1,Ilett K. F.1,Minchin R. F.1

Affiliation:

1. Department of Pharmacology, University of Western Australia,Nedlands.

Abstract

The lungs have a high polyamine transport capability, and the type II pneumocyte has recently been identified as a major site of putrescine uptake and localization (N. A. Saunders, P. J. Rigby, K. F. Ilett, and R. F. Minchin. Lab. Invest. 59: 380-386, 1988). However, recent evidence suggests that multiple polyamine transport systems exist. In the present study, localization of spermidine uptake in rabbit lung was investigated. Although [14C]spermidine was rapidly accumulated by lung slices, it was not significantly metabolized, and no efflux of the accumulated polyamine was apparent. Autoradiographs prepared after [3H]spermidine transport revealed a localization of uptake activity to cells identified by electron microscopy as type II pneumocytes. Spermidine uptake occurred in all type II cells examined and thus appeared to be a characteristic function of this cell type. In contrast, spermidine uptake was virtually absent in the major airways and blood vessels, whereas moderate uptake was associated with pulmonary alveolar macrophages and alveolar tissue. Subsequent purification and culture of type II pneumocytes showed these cells to have significant polyamine uptake activity. In addition, spermidine uptake activity was positively correlated with the proportion of type II cells present at the various stages of their purification. In other studies, cultured pulmonary alveolar macrophages possessed similar uptake activity to that of cultured type II cells. Combined, these data suggest that both type II cells and pulmonary alveolar macrophages may represent major sites of spermidine uptake in vivo. We also suggest that the transport of polyamines by type II cells may reflect a critical role for polyamines in a characteristic function of this cell type.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3