Affiliation:
1. Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710.
Abstract
Cytosolic free magnesium (Mgi) was measured in embryonic chick heart cells loaded with one of two newly developed 19F nuclear magnetic reasonance (NMR)-sensitive magnesium chelators, 4-methyl,5-fluoro-2-aminophenol-N,N,O-triacetate (MF-APTRA) and 5-fluoro-2-aminophenol-N,N,O-triacetate (5F-APTRA). The cells, embedded in strands of collagen, were superfused at a rate that allowed for solution changes in 2 min. In this preparation 19F- and 31P-NMR spectra were stable for at least 3.5 h. Because Na-coupled Mg countertransport may be a possible mechanism of Mg transport, in some experiments extracellular Na was reduced to 1 mM (choline substituted). This manipulation caused a 2.5-fold increase in Mgi from the basal level of 0.56 mM. A significant proportion of this increase in Mgi could be secondary to an increase in Cai that occurs with low extracellular Na (Nao) perfusion (Nai-Cao exchange). Perfusing cells with nominally Ca-free, 1 mM Na salt solution substantially attenuated the increase in Mgi that occurred with Ca present (1.25 mM) in the low Na (1 mM) solution. Furthermore, perfusion with 1 mM Na, Mg-free salt solution caused a 1.5-fold increase in Mgi, which cannot be attributable to Nai-Mgo exchange. Therefore attempts to describe the regulation of Mgi in heart cells must differentiate between the effects of Nai-Mgo exchange and competition for binding sites that are secondary to stimulation of ion gradient-coupled mechanisms.
Publisher
American Physiological Society
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献