Affiliation:
1. Institut fur Klinische Physiologie, Klinikum Steglitz der FreienUniversitat Berlin, Federal Republic of Germany.
Abstract
Cytoplasmic pH (pHi) was monitored using the pH-sensitive absorbance of 5(6)carboxy-4',5'-dimethylfluorescein in monolayers of a cell clone derived from bovine pigmented ciliary epithelium (PE) transformed with the simian virus 40. 1) Changing extracellular media from a nominally HCO3(-)-free solution to a solution containing 28 mM HCO3(-)-5% CO2 at constant extracellular pH (7.4) resulted in a delayed alkalinization of pHi, which was 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) sensitive and was inhibited in Na+-free medium and in Cl(-)-depleted cells. 2) DIDS pretreatment acidified pHi in HCO3(-)-containing media. 3) Replacing extracellular Cl- resulted in a DIDS-sensitive, HCO3(-)-dependent, and Na+-independent alkalinization. 4) Replacing extracellular Na+ in HCO3(-)-containing media led to a partly DIDS-sensitive intracellular acidification. 5) Recovery of pHi after an alkali load (acetate prepulse) had a HCO3(-)-dependent and DIDS-sensitive component. 6) Two Na+-dependent components participated in pHi regulation after an acid load (NH4+ prepulse) in HCO3(-)-containing solution. One was amiloride sensitive, the other was DIDS sensitive and was inhibited in HCO3(-)-free media and after Cl- depletion. We conclude that in cultured PE, in addition to Na+-H+ exchange, two HCO3-transporters participate in pHi regulation. Cl(-)-dependent Na+-HCO3-symport regulates pHi during steady state and after an acid load, and Na+-independent Cl(-)-HCO3-exchange is involved in pHi recovery after an alkali load.
Publisher
American Physiological Society
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献