Mechanisms and regulation of water permeability in renal epithelia

Author:

Verkman A. S.1

Affiliation:

1. Department of Medicine, University of California, San Francisco94143.

Abstract

Water transport occurs in all biological membranes. A few selected membranes in the kidney, amphibian urinary bladder, and erythrocyte have very high water permeability and are thought to contain specialized water transporting units termed "water channels." The known biophysical properties of membranes containing water channels are a high osmotic water permeability coefficient (Pf), an osmotic-to-diffusional water permeability coefficient ratio (Pf/Pd) greater than unity, a low activation energy (Ea), and inhibition by mercurial compounds. The biochemical and molecular characteristics of water channel pathways are not known at present. Established and new methods to measure Pf and Pd in kidney tubules and in isolated membrane vesicles from kidney cells are reviewed and evaluated. In the mammalian proximal tubule, a high Pf results from transcellular movement of water across highly permeable apical and basolateral membranes containing water channels. It has been assumed that proximal tubule Pf is unregulated; however, recent results indicate that apical water channels are retrieved by endocytosis and that Pf is decreased fivefold with increasing transepithelial osmotic gradients. In the thin and thick ascending limbs, Pf is nearly the lowest of all biological membranes and is not subject to regulation. In contrast, collecting tubule Pf is subject to hormonal regulation by vasopressin. Vasopressin binding to receptors located at the basal membrane of principal cells initiates adenosine 3',5'-cyclic monophosphate production, which is thought ultimately to activate the exocytic insertion of intracellular vesicles containing water channels into the cell apical membrane. Vasopressin-induced endosomes from kidney collecting tubule and toad urinary bladder contain functional water channels but no proton pumps or urea transporters, supporting a membrane shuttle hypothesis that is selective for water channels. Future directions for the isolation and molecular cloning of kidney water channels are evaluated.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3