Chloride channels in cultured glomus cells of the rat carotid body

Author:

Stea A.1,Nurse C. A.1

Affiliation:

1. Department of Biology, McMaster University, Hamilton, Ontario, Canada.

Abstract

As part of our investigations on the chemosensory mechanisms in the rat carotid body, we are studying the physiology of the parenchymal glomus cells by the patch-clamp technique. Here we characterize a large-conductance chloride channel (approximately 296 pS) with random open and closed kinetics in inside-out patches of cultured glomus cells. The open-state probability (Po; mean = 0.61) was hardly affected by membrane potential (-50 to +50 mV) and cytoplasmic calcium (0-1 mM). Similarly, the channel did not appear to be regulated by cytoplasmic nucleotides (1 mM) or pH (6.5-8). Ion-substitution experiments yielded the following selectivity sequence: chloride greater than bicarbonate greater than sulfate greater than glutamate approximately sodium. Single-channel currents were reversibly reduced or blocked by anthracene-9-carboxylic acid (5-10 mM) but were unaffected by stilbene derivatives (0.5-1 mM), by furosemide (1 mM), and by 5-nitro-2-(3-phenyl-propylamino)benzoic acid (0.01 mM). Because these cultured glomus cells have been shown to express carbonic anhydrase, it is inferred that the chloride channels may play an important role in the physiology of glomus cells by aiding in the regulation of pHi and the resting potential via bicarbonate and chloride permeability.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of Chemosensory Transduction in the Carotid Body;Morphofunctional and Neurochemical Aspects of the Mammalian Carotid Body;2023

2. The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners, and Physiological/Pathophysiological Implications;Life;2021-05-31

3. The properties, functions, and pathophysiology of maxi-anion channels;Pflügers Archiv - European Journal of Physiology;2016-01-06

4. TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing;Pflügers Archiv - European Journal of Physiology;2015-01-28

5. Functional Properties of Mitochondria in the Type-1 Cell and Their Role in Oxygen Sensing;Advances in Experimental Medicine and Biology;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3