Affiliation:
1. Department of Medicine, Medical College of Wisconsin, Milwaukee.
Abstract
We examined the effect of the medium pH on growth of primary cultures of mouse cortical tubule cells grown in defined medium. A significantly higher DNA content was observed within 24 h of lowering medium pH from 7.4 to 6.8 or 7.1 and persisted for the duration of the study. Further studies revealed that either medium acidification or insulin plus prostaglandin E1 nearly doubled uptake of [3H]thymidine in cells deprived of other growth factors for the previous 72-110 h. Moreover, the effects of insulin, prostaglandin E1, and medium acidification on [3H]thymidine uptake of quiescent cells were additive. An alkaline medium pH appeared to have a small but significant effect on cell hypertrophy, since cells exposed to pH 7.4 and 7.7 had a higher protein-to-DNA ratio than cells incubated at a lower pH. Cell pH of monolayers grown on glass slides determined from fluorescence of the carboxyfluorescein analogue 2',7'-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) was linearly correlated with medium pH, and changes in medium pH resulted in changes in steady-state cell pH of a similar magnitude. Four hours after medium acidification, relative increases in cell Na+ and water content occurred, whereas medium alkalinization led to decreases in cell Na+ and water content. The increases in cell Na+ and cell water content at pH 6.8 could be inhibited by amiloride. We conclude that decreasing the cell pH can be a mitogenic stimulus for renal tubule cells. Medium acidification is accompanied by changes in cell Na+ transport, which may be mediated in part by altered Na+-H+ antiporter activity.
Publisher
American Physiological Society
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献