Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells

Author:

Zharikov Sergey,Krotova Karina,Hu Hanbo,Baylis Chris,Johnson Richard J.,Block Edward R.,Patel Jawaharlal

Abstract

Elevated levels of serum uric acid (UA) are commonly associated with primary pulmonary hypertension but have generally not been thought to have any causal role. Recent experimental studies, however, have suggested that UA may affect various vasoactive mediators. We therefore tested the hypothesis that UA might alter nitric oxide (NO) levels in pulmonary arterial endothelial cells (PAEC). In isolated porcine pulmonary artery segments (PAS), UA (7.5 mg/dl) inhibits acetylcholine-induced vasodilation. The incubation of PAEC with UA caused a dose-dependent decrease in NO and cGMP production stimulated by bradykinin or Ca2+-ionophore A23187. We explored cellular mechanisms by which UA might cause reduced NO production focusing on the effects of UA on the l-arginine-endothelial NO synthase (eNOS) and l-arginine-arginase pathways. Incubation of PAEC with different concentrations of UA (2.5–15 mg/dl) for 24 h did not affect l-[3H]arginine uptake or activity/expression of eNOS. However, PAEC incubated with UA (7.5 mg/dl; 24 h) released more urea in culture media than control PAEC, suggesting that arginase activation might be involved in the UA effect. Kinetic analysis of arginase activity in PAEC lysates and rat liver and kidney homogenates demonstrated that UA activated arginase by increasing its affinity for l-arginine. An inhibitor of arginase ( S)-(2-boronoethyl)-l-cysteine prevented UA-induced reduction of A23187-stimulated cGMP production by PAEC and abolished UA-induced inhibition of acetylcholine-stimulated vasodilation in PAS. We conclude that UA-induced arginase activation is a potential mechanism for reduction of NO production in PAEC.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Reference36 articles.

1. Nitric oxide synthases: structure, function and inhibition

2. Aubert JD. Biochemical markers in the management of pulmonary hypertension. Swiss Med Wkly 135: 43–49, 2005.

3. Hyperuricemia as a prognostic factor in pulmonary arterial hypertension

4. Arginase Reciprocally Regulates Nitric Oxide Synthase Activity and Contributes to Endothelial Dysfunction in Aging Blood Vessels

5. Block ER, Patel J, Sheridan N. Endotoxin protects against hyperoxic decrease in membrane fluidity in endothelial cells but not in fibroblasts. Lab Invest 54: 146–153, 1986.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3