Author:
Ihara Yoshito,Urata Yoshishige,Goto Shinji,Kondo Takahito
Abstract
Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]icaused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]iin the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]iin the CRT-overexpressing cells treated with H2O2compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2through a change in Ca2+homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells.
Publisher
American Physiological Society
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献