Affiliation:
1. Department of Infectious Disease, Graduate School of Medicine, University of Tokyo, Tokyo 113-6855, Japan
Abstract
The mechanisms by which lipopolysaccharide (LPS) is recognized, and how such recognition leads to innate immune responses, are poorly understood. Stimulation with LPS induces the activation of a variety of proteins, including mitogen-activated protein kinases (MAPKs) and NF-κB. Activation of protein tyrosine kinases (PTKs) is also necessary for a number of biological responses to LPS. We used a murine macrophage-like cell line, RAW264.7, to demonstrate that Janus kinase (JAK)2 is tyrosine phosphorylated immediately after LPS stimulation. Anti-Toll-like receptor (TLR)4 neutralization antibody inhibits the phosphorylation of JAK2 and the c-Jun NH2-terminal protein kinase (JNK). Both the JAK inhibitor AG490 and the kinase-deficient JAK2 protein reduce the phosphorylation of JNK and phosphatidylinositol 3-kinase (PI3K) via LPS stimulation. Pharmacological inhibition of the kinase activity of PI3K with LY-294002 decreases the phosphorylation of JNK. Finally, we show that JAK2 is involved in the production of IL-1β and IL-6. PI3K and JNK are also important for the production of IL-1β. These results suggest that LPS induces tyrosine phosphorylation of JAK2 via TLR4 and that JAK2 regulates phosphorylation of JNK mainly through activation of PI3K. Phosphorylation of JAK2 via LPS stimulation is important for the production of IL-1β via the PI3K/JNK cascade. Thus JAK2 plays a pivotal role in LPS-induced signaling in macrophages.
Publisher
American Physiological Society
Cited by
122 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献