Oatp58Dc contributes to blood-brain barrier function by excluding organic anions from the Drosophila brain

Author:

Seabrooke Sara1,O'Donnell Michael J.1

Affiliation:

1. Department of Biology, McMaster University, Hamilton, Ontario, Canada

Abstract

The blood-brain barrier (BBB) physiologically isolates the brain from the blood and, thus, plays a vital role in brain homeostasis. Ion transporters play a critical role in this process by effectively regulating access of chemicals to the brain. Organic anion-transporting polypeptides (Oatps) transport a wide range of amphipathic substrates and are involved in efflux of chemicals across the vertebrate BBB. The anatomic complexity of the vascularized vertebrate BBB, however, creates challenges for experimental analysis of these processes. The less complex structure of the Drosophila BBB facilitates measurement of solute transport. Here we investigate a physiological function for Oatp58Dc in transporting small organic anions across the BBB. We used genetic manipulation, immunocytochemistry, and molecular techniques to supplement a whole animal approach to study the BBB. For this whole animal approach, the traceable small organic anion fluorescein was injected into the hemolymph. This research shows that Oatp58Dc is involved in maintaining a chemical barrier against fluorescein permeation into the brain. Oatp58Dc expression was found in the perineurial and subperineurial glia, as well as in postmitotic neurons. We specifically targeted knockdown of Oatp58Dc expression in the perineurial and subperineurial glia to reveal that Oatp58Dc expression in the perineurial glia is necessary to maintain the barrier against fluorescein influx into the brain. Our results show that Oatp58Dc contributes to maintenance of a functional barrier against fluorescein influx past the BBB into the brain.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3