Phosphorylation of radixin regulates cell polarity and Mrp-2 distribution in hepatocytes

Author:

Suda Jo1,Zhu Lixin2,Karvar Serhan1

Affiliation:

1. Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California; and

2. Digestive Diseases and Nutrition Center, University at Buffalo, State University of New York, Buffalo, New York

Abstract

Radixin, the dominant ezrin-radixin-moesin (ERM) protein in hepatocytes, has two important binding domains: an NH2-terminal region that binds to plasma membrane and a COOH-terminal region that binds to F-actin after a conformational activation by phosphorylation at Thr564. The present studies were undertaken to investigate the cellular changes in expression of radixin in WIF-B cells and to assess radixin distribution and its influence on cell polarity. We used a recombinant adenoviral expression system encoding radixin wild-type and Thr564 mutants fused to cyan fluorescent protein (CFP), as well as conventional immunostaining procedures. Functional analyses were characterized quantitatively. Similar to endogenous radixin, adenovirus-infected radixin-CFP-wild type and nonphosphorylatable radixin-CFP-T564A were found to be expressed heavily in the compartment of canalicular membrane vacuoles, typically colocalizing with multidrug resistance-associated protein 2 (Mrp-2). Expression of radixin-CFP-T564D, which mimics constant phosphorylation, was quite different, being rarely associated with canalicular membranes. The WIF-B cells were devoid of a secretory response, T567D radixin became predominantly redistributed to the basolateral membrane, usually in the form of dense, long spikes and fingerlike projections, and the altered cell polarity involved changes in apical membrane markers. Differences in polar distribution of radixin suggest a role for the linker protein in promoting formation and plasticity of membrane surface projections and also suggest that radixin might be an organizer and regulator of Mrp-2 and cell polarity in hepatocytes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3