Role of protein phosphatase 2A in calcium-dependent chloride secretion by human colonic epithelial cells

Author:

Chow Jimmy Y. C.,Barrett Kim E.

Abstract

EGF inhibits carbachol-induced chloride secretion by regulating a basolateral potassium channel via phosphatidylinositol 3-kinase (PI 3-kinase) and PKCε activation. Although both EGF and carbachol cause tyrosine phosphorylation of p85 of PI 3-kinase, only EGF activates the enzyme. Serine phosphorylation of p85 is thought to suppress the lipid kinase of PI 3-kinase. Our present study examined whether the differential effects of carbachol and EGF on PI 3-kinase activity correspond to varying phosphorylation of p85, and the mechanisms and consequences. T84colonic epithelial cells were treated with either EGF or carbachol. Cell lysates were immunoprecipitated with p85 antibody and blotted with either phosphotyrosine or phosphoserine antibodies. Protein phosphatase (PP) 1 and 2A activities were also measured. Both tyrosine and serine residues of p85 were phosphorylated by carbachol, whereas EGF induced only tyrosine phosphorylation. Moreover, EGF abolished carbachol-induced serine phosphorylation of p85 and activated PP2A without affecting PP1. Carbachol did not affect either phosphatase. Calyculin A or okadaic acid pretreatment reversed the inhibitory action of EGF on carbachol-induced chloride secretion and restored serine phosphorylation of p85. Although carbachol recruits p85, it phosphorylates both serine and tyrosine residues so that the lipid kinase of PI 3-kinase is inhibited. EGF results in p85 tyrosine phosphorylation as well as dephosphorylation of serine residues via the activation of PP2A. This explains the differential induction of PI 3-kinase enzyme activity in response to EGF and/or carbachol and has functional implications. Our data provide further insights into negative signals that regulate chloride secretion and into the molecular basis of signaling diversification in the intestinal epithelium.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3