Effect of mucosal halides on Ca(2+)-blockable currents through the skin of Rana ridibunda

Author:

Lacaz-Vieira F.1,Van Driessche W.1

Affiliation:

1. Departamento de Fisiologia e Biofisica, Universidade de Sao Paulo, Brazil.

Abstract

The present study deals with the interaction of mucosal anions with apical Ca(2+)-blockable cation channels of the skin of Rana ridibunda. The intracellular potential was depolarized by exposing the basolateral membranes to K2SO4 Ringer solution. The apical bathing medium consisted of nominal Ca(2+)-free K+ or Na+ solutions with SO4(2-), Cl-, Br-, or I- as the major anion. The effects of mucosal anion substitutions were studied by analyzing 1) the fluctuation in K+ current across the apical membrane driven by imposed transepithelial clamping potentials and 2) alterations of the transepithelial current (It) and conductance (Gt) as well as the Lorentzian parameters in response to anion substitution in the mucosal bathing solution. It and current noise spectra were recorded at different transepithelial potentials (Vt). A Lorentzian component was present in the power density spectrum when Vt was clamped at mucosa-positive voltages. Such noise components were never observed with mucosa-negative potentials. These findings suggest a rectifying behavior of the transepithelial cation currents. The Lorentzian noise component and the inward-oriented cation currents were depressed by the addition of micromolar concentrations of Ca2+ to the apical solutions as well as by replacing mucosal K+ or Na+ by N-methyl-D-glucamine. The Ca(2+)-blockable current and Lorentzian noise plateau (So) were gradually increased by raising Vt. Both parameters, as well as the corner frequency (fc), depended strongly on the major anion species in the apical solution; replacing mucosal SO4(2-) by one of the halides tested reduced fc and elevated So, It, and Gt considerably.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3