Relaxation, [Ca2+]i, and the latch-bridge hypothesis in swine arterial smooth muscle

Author:

Rembold C. M.1

Affiliation:

1. Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville 22908.

Abstract

During vascular smooth muscle relaxation, myosin light-chain phosphorylation values decrease to resting values more rapidly than do stress values. Because phosphorylation is proportionally low, the latch-bridge hypothesis predicts that stress during relaxation should be predominantly carried by latch bridges. I evaluated the mechanical properties of latch bridges by changing tissue length and measuring myoplasmic Ca2+ concentration ([Ca2+]) with aequorin during relaxation of swine carotid medial tissues. Stress production was predicted with the latch-bridge model of Hai and Murphy, in which the measured aequorin [Ca2+] signal is the only determinant of stress. The aequorin-based latch-bridge model predicted relaxation induced by removal of the histamine stimulation. However, when tissues were relaxed by removal of extracellular Ca2+ or Ca(2+)-channel blockers in the continued presence of histamine, the aequorin-based model modestly underestimated the resulting relaxation. This underestimation was most likely caused by a small increase in the [Ca2+] sensitivity of phosphorylation since a model with an altered [Ca2+] sensitivity of phosphorylation more accurately predicted the resulting relaxation. The time course of relaxation in swine carotid artery was not substantially altered when the tissue was either briefly stretched or shortened and then returned to the original length. Because stretch should detach cross bridges, I modified the aequorin-based latch-bridge model to account for stretch-induced cross-bridge detachment. Because [Ca2+] values were slightly above resting values both before and after the stretch, the model predicted that phosphorylated cross bridges could reattach, be dephosphorylated, and form new latch bridges. The model predicted relaxation except during the first few seconds after stretch. These results suggest that latch-bridge reattachment is not necessary to explain the majority of the response to stretch during relaxation. The rate-limiting step for relaxation appears to be removal of [Ca2+] and not latch-bridge detachment.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3