Regulation of Na-K-2Cl cotransport in osteoblasts

Author:

Whisenant N.1,Zhang B. X.1,Khademazad M.1,Loessberg P.1,Muallem S.1

Affiliation:

1. Department of Physiology, University of Texas Southwestern MedicalCenter, Dallas 75235.

Abstract

Uptake of 86Rb was used to follow the activity of Na-K-2Cl cotransport in the osteosarcoma cell line UMR-106-01. The ouabain-resistant fraction of 86Rb uptake was sensitive to bumetanide and furosemide. Furosemide-sensitive 86Rb uptake required the presence of Na+, K+, and Cl- in the incubation medium. These observations indicate the presence of a Na-K-2Cl cotransport system in osteoblasts. Cotransporter activity was stimulated by agonists which increase adenosine 3',5'-cyclic monophosphate (cAMP), cytosolic free Ca2+ ([Ca2+]i), and protein kinase C (PKC) activity such as parathyroid hormone (PTH) and prostaglandin E2 (PGE2). However, endothelin, which increases [Ca2+]i and PKC activity without affecting cellular levels of cAMP, was ineffective in stimulating the cotransporter. Accordingly, increasing cellular cAMP with forskolin was as effective as PTH and PGE2 in stimulating the cotransporter. Stimulation of PKC with TPA inhibited the cotransporter in a time- and concentration-dependent manner. No stimulation of cotransport could be demonstrated at any 12-O-tetradecanoyl-phorbol-13-acetate (TPA) concentration or incubation time. The Na-K-2Cl cotransporter was stimulated by cell shrinkage. Maximal stimulation was observed after swelling the cells in hypotonic medium and subsequent shrinkage in isotonic medium. Stimulation by cell shrinkage can be demonstrated in control, agonist-, cAMP-, and TPA-treated cells. These observations suggest that 1) the osteoblastic Na-K-2Cl cotransporter is activated by calciotropic hormones predominantly through an increase in cellular cAMP, and 2) in osteoblasts, the cotransporter is independently regulated by different biochemical pathways.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Na + ‐K + ‐2Cl − Cotransporter (NKCC) Physiological Function in Nonpolarized Cells and Transporting Epithelia;Comprehensive Physiology;2018-03-25

2. Water Homeostasis and Cell Volume Maintenance and Regulation;Cell Volume Regulation;2018

3. Water;Encyclopedia of Animal Science, Second Edition;2011-02

4. Molecular determinants of hyperosmotically activated NKCC1-mediated K+/K+exchange;The Journal of Physiology;2010-09-15

5. Regulation of Cation-Chloride Cotransporters;Physiology and Pathology of Chloride Transporters and Channels in the Nervous System;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3