Affiliation:
1. Department of Physiology and Biophysics, University of Alabama, Birmingham 35294.
Abstract
We compared the potency and inhibitory actions of three different classes of organic acids on a Cl channel derived from colonic enterocyte plasma membrane vesicles. Chloride channels were incorporated into planar lipid bilayer membranes to examine the effects of the anthranilic acids, diphenylamine 2-carboxylic acid (DPC) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), the indanyl alkanoic acids, 2-[(2-cyclopentyl-6,7-dichloro-2,3-dihydro-2-methyl-1-oxo-1H-inden -5-yl)oxy] acetic acid (IAA-94) and its stereoenantiomer IAA-95, and the disulfonic stilbene, 4,4'-dinitro-stilbene-2,2'-disulfonic acid (DNDS). Except for DNDS, each of the blockers was equipotent from both the outer membrane and the cytoplasmic side of the channel protein. The potency order from the outmembrane side was DNDS greater than IAA-94 = IAA-95 greater than NPPB much greater than DPC. In contrast, the potency order from the cytoplasmic side was IAA-94 = IAA-95 greater than NPPB greater than DNDS much greater than DPC. DPC and NPPB caused a concentration-dependent decrease in the single-channel conductance (fast block). DNDS, IAA-94, and IAA-95 caused a flickery-type block and a concentration-dependent decrease in open-channel probability. Kinetic analysis revealed that blockade could be explained by a linear closed-opened-blocked kinetic scheme. Similarities in the electrostatic potential maps of these open-channel blockers suggest they may bind to a single shared binding site within the channel protein.
Publisher
American Physiological Society
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献