ATP-sensitive Na(+)-H+ antiport in type II alveolar epithelial cells

Author:

Brown S. E.1,Heming T. A.1,Benedict C. R.1,Bidani A.1

Affiliation:

1. Pulmonary Research Laboratories, University of Texas Medical Branch, Galveston 77550.

Abstract

Type II alveolar epithelial cells in suspension have been previously shown to possess a Na(+)-H+ antiporter that modulates recovery from an intracellular acid load in the nominal absence of HCO-3 [E. Nord, S. Brown, and E. Crandall. Am. J. Physiol. 252 (Cell Physiol. 21): C490-C498, 1987]. Such a Na(+)-dependent mechanism has also been demonstrated in cultured type II cell monolayers (K. Sano et al. Biochim. Biophys. Acta 939: 449-458, 1988). It has recently been suggested that cultured type II cells possess a H(+)-ATPase that contributes to recovery from an intracellular acid load [R. Lubman, S. Danto, and E. Crandall. Am. J. Physiol. 257 (Lung Cell. Mol. Physiol. 1): L438-L445, 1989]. The present study was undertaken to investigate and characterize the mechanisms by which cultured type II cells recover from an intracellular acid load in the nominal absence of HCO-3. Cultured type II cell monolayers were loaded with the pH-sensitive probe 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein, and the characteristics of recovery from an imposed intracellular acid load were studied. Recovery of intracellular pH (pHi) was found to be strictly Na(+)-dependent and inhibited greater than or equal to 95% by 1 mM amiloride. Initial rate of recovery was highly sensitive to pHi, with recovery rates varying inversely with increasing pHi. An acidic extracellular pH (6.5) abolished pHi recovery. Treatment of type II cells with either the sulfhydryl reagent N-ethylmaleimide, a nonspecific sulfhydryl reagent, or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, a specific vacuolar H(+)-ATPase inhibitor at the concentration tested, resulted in marginal but not statistically significant decrements in pHi recovery. Intracellular ATP depletion, using KCN or replacement of glucose by a nonmetabolizable glucose analogue, reduced pHi recovery by 70-75% relative to control values. Sensitivity to ATP was apparent even under conditions that preserved the transmembrane Na+ gradient. Taken together, these data are most consistent with a single mechanism for pHi recovery in the absence of HCO3-. We interpret this mechanism to be an ATP-sensitive Na(+)-H+ antiporter that acts to reestablish pHi in type II alveolar epithelial cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3