Ca2+ current and Ca2+ transients under action potential clamp in guinea pig ventricular myocytes

Author:

Arreola J.1,Dirksen R. T.1,Shieh R. C.1,Williford D. J.1,Sheu S. S.1

Affiliation:

1. Department of Pharmacology, School of Medicine and Dentistry,University of Rochester, New York 14642.

Abstract

Precise characterization of the magnitude and kinetics of transsarcolemmal Ca2+ influx during an action potential (AP) is essential for a complete understanding of excitation-contraction coupling in heart. Using a voltage-clamp protocol that simulated a physiological AP (AP clamp), we characterized the properties of the Ca2+ current (ICa) in guinea pig ventricular myocytes. The AP-generated ICa showed a complex time course that was different from ICa generated by a square pulse. ICa activated rapidly during the upstroke of the AP and then partially inactivated during the plateau. The fast component of ICa reached a peak value of -7.6 +/- 1.0 pA/pF at 2.40 +/- 0.30 ms after depolarization, followed by a slow component with a peak value of -2.9 +/- 0.4 pA/pF during the plateau. ICa generated by an AP was composed of both L- and T-type Ca2+ channels. T-type Ca2+ current contributed to the fast component of ICa and L-type Ca2+ current contributed to both fast and slow components of ICa. Activation of beta-adrenoceptors enhanced ICa with a maximal effect lasting throughout the entire plateau of the AP. Measurements of cytosolic Ca2+ transients using fura-2 indicated that the ICa was responsible for triggering Ca2+ release from the sarcoplasmic reticulum. The AP clamp provides a new approach for investigation of the relationship between ICa and Ca2+ transients under more physiological conditions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3