Affiliation:
1. Department of Oral Biology, Boston University Medical Center 02118.
Abstract
Bone has the capacity for repair and regeneration. The repair process is thought to be locally regulated by growth factors. One of the growth factors that potentially plays a significant role in these processes is platelet-derived growth factor (PDGF). Two different PDGF genes have been identified, PDGF-A and PDGF-B, whose gene products give rise to biologically active dimers. We now report that PDGF-AA and PDGF-BB exhibit saturable binding to normal human osteoblastic cells. By Scatchard analysis we estimate that there are approximately 43,000 PDGF-AA binding sites per cell, with a dissociation constant (Kd) of 2.2 x 10(-10)M, and 55,000 high-affinity PDGF-BB binding sites per cell, with a Kd of 1.2 x 10(-10)M. The functional consequence of PDGF binding was also assessed. PDGF-AA and PDGF-BB both stimulated migration of normal human osteoblastic cells and stimulated thymidine incorporation. To gain insight into potential transmodulation of the PDGF response, we investigated the capacity of interleukin-1 beta (IL-1 beta), a cytokine that induces bone resorption, to modulate PDGF binding and PDGF-induced biological activity. IL-1 beta significantly reduced PDGF-AA binding and significantly decreased both PDGF-AA-mediated cell migration and thymidine incorporation. In contrast, IL-1 beta had only a small effect of PDGF-BB binding and PDGF-BB-induced biological activity in normal human osteoblastic cells.
Publisher
American Physiological Society
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献