Affiliation:
1. Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana 70112.
Abstract
The role of specific products of the lipoxygenase pathway of arachidonic acid metabolism has been investigated in the Friend erythroleukemia cell line, a model system for erythroid cell differentiation. When triggered with agents such as hexamethylene-bis-acetamide, these cells mature as normal erythroid cells. 15-Hydroxyeicosatetraenoic acid (15-HETE) was identified by reverse-phase high-performance liquid chromatography and by radioimmunoassay as the principal lipoxygenase metabolite produced by Friend cells. Its production was significantly lower (903 +/- 73 pg/ml) in stationary-phase cells compared with logarithmic-phase cells (1,496 +/- 24 pg/ml). In addition, inhibitors of both the cyclooxygenase and lipoxygenase pathways (phenidone, BW 755C, caffeic acid, nordihydroguaiaretic acid and BW 4AC) significantly blocked DNA synthesis (P less than 0.05), whereas neither specific inhibitor of the cyclooxygenase pathway (aspirin or sodium meclofenate) blocked DNA synthesis. The addition of 15-hydroperoxyeicosatetraenoic acid as well as 15-HETE to Friend cells produced an increase in DNA synthesis as assessed by [3H]thymidine incorporation in differentiating cells but not in proliferating cells. These data support a role for 15-lipoxygenase products of arachidonic acid metabolism in maintaining DNA synthesis.
Publisher
American Physiological Society
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献