Essential activation of Na(+)-H+ exchange by [H+]i in HL-60 cells

Author:

Restrepo D.1,Cho D. S.1,Kron M. J.1

Affiliation:

1. Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104.

Abstract

The intracellular pH (pHi) dependence of the rate of Na(+)-H+ exchange was determined in undifferentiated promyelocytic HL-60 cells by measuring alkalinization rates using the fluorescent pHi indicator 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). BCECF was calibrated in the pH range from 5 to 7 using the nigericin technique of Thomas and co-workers (J. A. Thomas, R. N. Buchsbaum, A. Zimniak, and E. Racker. Biochemistry 18: 2210-2218, 1979). Exchange rate increases as pHi is lowered below pH 7.00. At low pH (pH below 6.3), the dependence of Na(+)-H+ exchange rate on intracellular proton activity is well fitted by the Michaelis-Menten equation with a maximum exchange velocity of 33.7 +/- 2.4 mmol H(+).1 cell water-1.min-1 and a half-saturation constant of 1.35 +/- 0.28 microM (corresponding to a minus log of the Michaelis constant of 5.89). However, a Hill plot reveals that the Hill coefficient changes gradually from one to two when pH is changed from 5 to 7, ruling out Michaelian kinetics. The dependence of exchange flux on internal protons is well fit in the full pH range from 5 to 7 by a simple kinetic model (essential activation) with modifier and transport sites for internal proton binding. At low pH, failure to correct BCECF measurement of pHi for contribution to fluorescence signal from extracellular dye and for quenching of intracellular BCECF leads to an artifactual increase in the measured Hill coefficient. These two findings (increase in Hill coefficient as pHi is increased and artifactual increase in Hill coefficient because of methodological reasons) provide a good explanation for the wide range of Hill coefficients reported in the literature.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3