Affiliation:
1. Hopital Necker, Institut National de la Sante et de la RechercheMedicale, Paris, France.
Abstract
The initial rate of Cu2+ uptake in human red blood cells was measured by atomic absorption. About 80% of Cu2+ uptake was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) concentrations greater than 5-10 microM. DIDS-sensitive Cu2+ uptake required the presence of external HCO3- or external Cl-. Cl- strongly stimulated Cu2+ uptake following a Michaelis-like function, with apparent dissociation constant (KCl) of 72 +/- 9.4 (SD) mM (n = 6 experiments). HCO3- stimulated DIDS-sensitive Cu2+ uptake following a Michaelis-like function, with apparent dissociation constant (Kbic) of 10 +/- 1.9 (SD) mM (n = 4 experiments). Maximal rates (of Cl(-)- or HCO3(-)-stimulated Cu2+ uptake) were nonadditive. DIDS-sensitive Cu2+ uptake was not modified by physiological concentrations of phosphate or sulfate. Conversely, it was strongly inhibited by physiological concentrations of L-histidine and cysteine (at a Cu2+ concentration of 100 microM, these physiological ligands exhibited KHis and KCys of 50 and 80 microM, respectively). By using a copper-selective electrode, we found that at pH 7-7.4 copper is associated with OH-, particularly in the form of Cu(OH)2 complexes. In conclusion, the anion exchanger is the major transport mechanism for red blood cell Cu2+ uptake. The translocating species can be the monovalent anion complexes of copper with OH-, Cl-, and/or HCO3-.
Publisher
American Physiological Society
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献